Transport Phenomena in Gel
نویسنده
چکیده
Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.
منابع مشابه
Fabrication and Characterization of Visible Light active Fe-TiO2 Nanocomposites as Nanophotocatalyst
In this research Fe-TiO2 nanocomposites with different molar ratios of Fe/Ti were prepared as nano-photocatalyst using a modified Sol-Gel process at ambient temperature. Crystallographic properties of nanocomposites were characterized by X-ray Diffraction (XRD). Surface morphology and mean particle size of nanocomposites were specified by Field Emission Scann...
متن کاملMultiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis
In the present paper, a numerical investigation of transport phenomena is considered in electrically-conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with magnetic field impact, dissipation effect, and slip conditions at the surface are...
متن کاملNanoscale Studies on Aggregation Phenomena in Nanofluids
Understanding the microscopic dispersion and aggregation of nanoparticles at nanoscale media has become an important challenge during the last decades. Nanoscale modeling techniques are the important tools to tackle many of the complex problems faced by engineers and scientists. Making progress in the investigations at nanoscale whether experimentally or computationally has helped understand th...
متن کاملStudy on the Effect of Humidity on Electrical Properties of Copper-Silica Aerogel
> Copper-silica aerogel was synthesized by the sol-gel method and was heated at 400, 500 and 600°C for 3 h in the air. The gained materials were named as sample (a), (b) <span style="font-size: 9pt; colo...
متن کامل